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The Benjamin (1968) analysis of a two-fluid density current is extended to include 
the effect of vorticity within the current. In  the case of constant vorticity, the 
density-current depth is shown to lie between the limits of half and two-thirds of the 
channel depth. More general vorticity distributions are also considered, namely those 
that have : (i) a maximum in the upper and lower regions of the density current ; and 
(ii) a maximum in the middle of the density current. In  the former, as in the case of 
constant vorticity , density-current structures exist, whereas in the latter, deep 
overturning circulations predominate which can cause a ' blocking ' of the upstream 
inflow. A generalized propagation formula which includes the effects of finite depth 
and rear inflow into the density current is established and the uniqueness issue is 
considered. 

The analysis is further extended to a three-fluid system, composed of physically 
distinct component flows, namely, a density current, an overturning updraught 
region in upper levels ahead of the density current and an updraught in which the 
fluid ascends without overturning to its outflow level. Two types of behaviour are 
identified. First, a symmetric mode in which the density current and the overturning 
updraught have the same depth and, second, an asymmetric mode with solutions 
restricted to a certain parameter range. A special case in which the fluids have the 
same density illustrates the basic dynamics of the problem and also the nature of the 
vertical transport of momentum. 

1. Introduction 
This paper examines the dynamics of density currents (or gravity currents, as they 

are sometimes called) which are constrained to conserve mass, energy and momentum 
in a vertically bounded domain. It is, however, appreciated that the non-conservation 
of energy is an important consideration. For instance, in hydraulic jumps or in 
shallow density currents, momentum and mass can be simultaneously conserved but 
a loss of total energy to turbulence is essential, a property which results in these 
systems being fundamentally dissipative. Consequently, mass and momentum 
conservation are stronger constraints on the dynamics than energy conservation. 
This aspect was considered a t  length by Benjamin (1968) who clarified the von 
Karmin (1940) analysis for the propagation of density currents in an unbounded 
fluid. It will be shown, however, how the conservative analysis can be extended to 
non-conservative systems. 

A considerable amount of experimental and theoretical work has been performed 
on density currents in unstratified fluids and generally these studies have been 
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confined to the propagation of density currents remote from their generation region. 
The reader is referred to Simpson (1982) for a review in which the ubiquitous nature 
of density current phenomena is demonstrated. The physical problem is complicated 
considerably by the inclusion of stratification and localized heating or cooling, 
because vorticity sources then exist within the fluid. Such complications arise in an 
atmospheric application of density-current theory and the work reported in this 
paper is a limiting case of this more complex problem. 

The classical two-fluid model of Benjamin (1968) is extended to include vorticity 
in the density current. I n  addition, a three-fluid type of density current is developed, 
the motivation being to  understand the basic dynamics of atmospheric squall lines 
and narrow cold frontal rainbands for which the three-fluid model is an archetype. 
Only the far-field solutions a t  large distances from the density-current head are 
considered. In  $2, the classical two-fluid problem is extended, while the three-fluid 
system is analysed in $3.  In order to distinguish between these two types, the 
terminology of ‘ two-fluid ’ and ‘ three-fluid ’ density currents will be adopted. 

2. Two-fluid models 
The flow will be assumed to be steady @/at = 0 in a frame of reference moving a t  

the propagation speed of the system), two-dimensional, inviscid, incompressible and 
not necessarily Boussinesq, so the Euler and mass conservation equations are 
appropriate, 

Du 1 
-+-Vp’+gk = 0 ,  
Dt P 

au’ awl 
ax a2 
-+- = 0, 

where D/Dt = u‘ a/ax’ + w‘ 3/82.. The Bernoulli equation is particularly useful in a 
steady theory because it represents energy conservation, 

1 2 P’ zv +-+gz’ =f((Y), 
P 

where f($) is a streamline variable. 
The following classical cases serve to  introduce the theoretical problem. In the 

density-current problem in a channel, considered by Benjamin (1968), stagnant fluid 
of negligible density intrudes along the horizontal upper boundary into a denser 
fluid. The depth of the density current is shown to be equal to half the depth of the 
channel so h‘ = iH, the inflow is subcritical (Uo = i (gH’ )z )  and the outflow is locally 
supercritical (U;  = (2gh’)i). It was also shown that a wavetrain extending 
downstream cannot exist in conservative flows so the solution is mathematically 
unique. Furthermore, for a shallow density current (h’/H’ small), wave breaking a t  
the density-current head is inevitable so that the flow is locally non-conservative. 

The case of a stagnant fluid (p  = p b )  intruding along the bottom boundary into a 
less dense fluid (p  = p,), is mathematically analogous to the above model. Defining 
db = g(p,-p,)/p,, it can be shown that 

h‘ = tfl, v, = t ( d b  IT);, u; = (2db h’)k 

This will be referred to as the Benjamin solution. 
The analysis of von Karman (1940) concerns an infinitely deep overlying fluid. In 
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this case, the inflow Froude number is expressed as Uh/( jb  h')a = 2/2 instead of the + that holds for a bounded fluid. Benjamin (1968) argued that energy could not be 
conserved in shallow, steady and irrotational density currents. This repudiates the 
von K$rm&n (1940) results for a density current in an infinitely deep fluid. 

2.1. Density current models containing a n  internal circulation 
In the Benjamin (1968) model it is assumed that the fluid within the density current 
is motionless in a frame of reference moving at its propagation velocity and thus the 
assumption of hydrostatic pressure within the density current is exact. In the 
following analysis, the effect of vorticity in the density current on its far-field 
behaviour is included. The pressure in the density current then cannot be exactly 
hydrostatic except in the far-field where the flow is horizontal. 

The physical basis for the problem considered in this paper considerably differs 
from that associated with 'dam-break' initial conditions in which it is appropriate to 
assume that the density current has zero vorticity. In atmospheric density currents, 
however, the physical situation is complicated not only by sources of vorticity 
generated by the localized heating or cooling of a multiphase state (not considered 
here) but also by the density-current inflow having non-zero vorticity. Atmospheric 
density currents frequently originate as outflows of cold air from precipitating 
convection, within which there is a generation of vorticity arising from horizontal 
gradients of density. In another atmospheric example, the outflow from an intense 
descending column of air (' downburst ') diverges on encountering the ground and 
subsequently behaves like a density current ; these outflows generate the notoriously 
dangerous low-level wind-shears which have resulted in a number of aircraft disasters. 
Since these downbursts are caused by the cooling arising from the evaporation of 
precipitation, non-zero vorticity is generated within the outflow. In general, the low- 
level flow towards the head region is an important characteristic of density 
currents. 

Referring to figure l ( a ) ,  let the surface inflow speed at the rear of the density 
current be Us, and the change in pressure across the current a t  its far-field height (h') 
be Ap;.. In the two-fluid case Api,  = pLT -pkT .  By considering the Bernoulli equation 
along the lower boundary and the interface between the fluids, it follows that 

uh = - ( 2 ; b  h' + Uk2Pb/pa + 2Ap;/pa)f.  

Compared to the conventional formula, this relationship involves two additional 
parameters. It is, however, more accurate for density currents that are not shallow 
compared with the scale depth of the region they occupy. Since, in general, 
Ap;, = -$pa(Ui2- Ui2)  -dissipation, where U;  is the downstream out-flow in fluid A ,  
it follows that ApA, is negative. (It is appropriate to include dissipation in this 
particular context because the possibility of an unbounded fluid is not precluded.) 
However, the effect of the pressure field becomes apparent in bounded currents, due 
to the presence of an upper boundary. The other additional term (Ui2pp,/pa) is 
positive and so there is a partial cancellation, making the classical propagation 
formula more accurate for a bounded density current than might otherwise be 
expected. 

The above formula leads to a revised relationship for the propagation speed of a 
two-fluid current in a Boussinesq fluid. In the Boussinesq case, it is valid to set 
palpa = 1 in the UL2pb/pa term. The propagation speed (c )  in a motionless environ- 
ment satisfies c = - Uh so it follows that the specific kinetic energy of propagation (&') 
is equal to the sum of the available potential energy in the density current (#, h'), the 
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PkT 

FIGURE 1.  Schema of the density current models: (a) the two-fluid system consisting of a density 
current and a jump updraught; (b) the three-fluid system having a density current, a jump 
updraught and an overturning updraught. 

maximum specific kinetic energy of the relative inflow (iUi2) into the density current 
and the work done by the far-field change in pressure a t  height h', (Ap;./p,) .  This is 
to be compared with the classical formula for an unbounded fluid given by von 
Karman (1940) and Benjamin (1968), where +* is simply equal t o  the available 
potential energy. 

In  a numerical model of density currents in a vertically bounded domain, Crook 
& Miller (1985) found that if a flow existed within the density current, its 
propagation speed was in excess of that predicted for an unbounded fluid, namely 
c = (26,h');. Moreover, it was also shown that as the upper boundary was lowered 
sufficiently, the propagation speed approximated to the value correspnding to  a 
Froude number of 1 / 2 .  These results are consistent with the above theoretical 
conclusions. 

I n  the present context, the intersection of the density current with the lower 
boundary is a stagnation point, so it follows from the Bernoulli equation that the 
propagation speed is simply related to the pressure rise a t  the stagnation point. It is 
obvious that 

where on referring to figure 1 (a ) ,  Api = pL-pkB. This expression is attractive 
because it does not directly involve the kinematics of the flow within the current. 
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There are two distinct branches of flow shown in the two-fluid problem in 
figure 1 (a ) ,  namely an ascending ‘jump ’ in the less dense fluid (region A )  and an 
‘overturning’ in the density current (region B).  In  the present context, ‘jump’ refers 
to  the elevated behaviour of the streamlines and should not be confused with a 
hydraulic jump, which is generally a dissipative phenomenon. These two branches 
are assumed to be of individually constant density and separated by an interface 
vortex sheet. I n  region A ,  the inflow is horizontal and of constant speed ( -  U i )  and 
since the fluid is unstratified, the vorticity is identically zero. I n  region B, the density 
current, the far-field flow is again horizontal and the vorticity (7) is a non-zero con- 
stant, 7 = -2U;lh‘. The far-field velocity in this region is u’,(z) = U;(h’-2z’)/h’. 

A bulk conservation condition can be derived in the usual way by integrating the 
steady-state horizontal momentum equation, div (pu’v’) +i3p’/ax’ = 0, over a volume 
of unit width in the transverse (y’)  direction. The following equation is then obtained 
by using the divergence theorem and pressure continuity a t  the interface between the 
fluids : r’ (p~’~+p’)-, d d  = (p~’~+p’), dd,  (2 .4)  1’ 
where the subscripts - 00 and 00 denote the far-field variables as x’ + - 00 and co 
respectively. This condition is frequently, but somewhat ambiguously, called the 
‘flow force’. Here the more general term ‘momentum conservation’ will be used with 
the understanding that the sum of the horizontal momentum flux per unit volume 
and the pressure is conserved. This is a much stronger constraint than energy 
conservation. 

Define K ,  = (Ui/Uh)2,  K, = P b  Us2/p, Ub2, A; = i b H ‘ / U i 2 ,  where U; is the surface 
inflow to the density current as x’ -+ - co. An inflow Froude number can therefore 
be defined as F, = l / A , .  Height, velocity and pressure are non-dimensionalized as 
h = h ‘ / H ,  u = u’/Ui, w = w’/Ui and p = p’/p, Uh2. The K-parameters can be 
interpreted as either the normalized momentum fluxes per unit volume or kinetic 
energies per unit mass. K ,  refers to the jump inflow and outflow, while K ,  compares 
the strength of the inflow to the density current and the inflow to the jump. K ,  is 
therefore a relative measure of the intensity of the density-current inflow. It should 
be noted that F, is distinct from, but functionally related to, the classical Froude 
number ( F )  for a density current because Fb = Fhf. F2 is proportional to the ratio of 
the inflow kinetic energy and the potential energy difference between particles 
undergoing vertical displacement in the jump region and the density current (the 
available potential energy) and hence depends on the value of h. 

The Froude number used here will be defined as F, because it represents an inJlow 
value which is independent of the depth of the density current. Moreover, the three- 
fluid problem in the following section will identify an additional Froude number for 
the overturning updraught (Fc) and it is appropriate to maintain the same vertical 
scale height (H’) in both F, and Fc. By using (2 .4) ,  energy and mass conservation, it 
can be shown that 

;K,-K,h+h;h = 0. (2.5) 

The case of a stagnant density current is recovered by setting K ,  = 0 and it can 
be shown that the resulting equation agrees with (2.4),  (2 .5)  of Benjamin (1968) and 
the simplified form of (2 .6)  from Holyer & Huppert (1980). In these cases, 

K,(1-h2)-h;h(2-h)  = 0, 2Ka( l -h ) -h ih (2 -h)  = 1, (2.6) 
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A: h(2-  h)  (1 - h) h(2-  h)  
1 ,  - --= 

l + h  1-h2 

that hold for the Benjamin model. 

density-current interface gives the energy conservation relationship 
Application of the Bernoulli equation to the surface inflow streamlines and to the 

K ,  = K a - 2 h ; h .  (2 .7)  

An equation representing the conservation of mass, momentum and energy is 
thus obtaine,d by eliminating K ,  from (2 .5) ,  (2 .7)  and using the relationship 
K ,  = 1 / (  1 - h)'. Non-zero values of h are given by 

(2 .8)  

In  the special case where the fluids have the same density ( A ,  = 0 )  it follows that 
h = $, but otherwise h < $. This is an interesting result because for the stagnant 
density current of Benjamin (1968),  h = t is the unique solution. The additional 
solutions that arise in the present analysis are due to K ,  being a variable. A flow 
within the density current therefore has a significant effect on its depth and 
dynamical properties. Furthermore, inspection of the energy equation (2.7) shows 
that since K ,  is non-negative, the local outflow Froude number Fo = U',(d,h')z 2 4 2 .  
Moreover (2 .5) ,  together with mass conservation gives, F: = 1 / ( 2 - 3 h )  from which it 
follows that h 2 g. 

Two relationships between K,, h and the pressure difference acoss the system are 
readily derived. Let E,  = ( p i B  - p k B ) / ; p a  Uhz ; then applying the Bernoulli equation to 
the surface streamlines and using the condition that the intersection of the density- 
current interface with the lower boundary is both a separation and stagnation 

h = 9[2 - A: h( 1 - h)']. 

point, 
E ,  = l - K b ,  

Using ( 2 . 5 ) ,  (2.8) and K ,  = 1 / ( 1  -h)', 
3(2h- 1) 

K ,  = 
(1-h)' ' 

and the subsequent elimination of K ,  from (2.9), (2 .10)  gives 

[ h - 2 ( 2 - 4 3 ) ]  [ h - 2 ( 2 +  4 3 ) ]  
(1-h)' 

E, = 

(2 .10)  

(2.1 1 )  

These considerations prove that the solutions h = and h = $ are each limiting 
cases of the conservative flow described above. The stagnant density current with 
K ,  = 0 corresponds to h = and F, = t. If a constant vorticity exists within the 
density current, then as the density difference between the density current and the 
jump brancbes decreases, the absolute value of K ,  increases with h to the limit where 
h = < h < f. Unlike 
the case with a stagnant density current, the solution is not unique but depends on 
the value of K,, and more generally on the vorticity within the density current. The 
surface pressure change across the system is zero when h = 2(2-  4 3 ) ,  a pressure rise 
exists if & < h < 2(2-  4 3 )  and a pressure fall if 2(2- 4 3 )  < h < $. From mass 
conservation, order-one values of h imply a high outflow speed in the less dense fluid 
with a surface pressure drop downstream. 

and KE = - 3 .  The range of permissible solutions is therefore 
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Now (2.8) can be expressed as a cubic in h, which represents the simultaneous 
conservation of mass, energy and momentum, 

AEh3-2Aih2+(3+AE)h-2 = 0. (2.12) 

It is easily shown that unless h, = O(h = I ) ,  

h = 2 3 { 1 - [ ($- - l r  sinh ($ sinh-l[ ($1 - l]",] (2.13) 

and this equation has only one physical root. 
The solutions for h, occurring in the range [$,$I, correspond to A, in the 

approximate range [0,2], where the lower bound represents a current with zero 
density difference, a maximum depth and internal circulation intensity and the 
upper bound represents the Benjamin solution. The functional dependence of h on 
A, is plotted along with the more general solutions in figure 3 and this also represents 
a limiting case of the general solutions for the three-fluid system of $3. For a unique 
solution, the value of K ,  must be specified, say by (2.7), which gives another equation 
relating h and A,. The value of Kb varies along the curve on this figure, from K i  = - 3 
when A, = 0 to K ,  = 0 when A, = 2. Further remarks on the question of uniqueness 
can be found in $4. 

2.2. Far-$eld streamline displacements 
An equation for the far-field streamline displacements can be derived from the 
Bernoulli, mass continuity and hydrostatic pressure equations for the far field. Mass 
continuity gives 

(2.14) 

If z, and z1 are respectively the inflow and outflow heights of each streamline 
$ = constant, the Bernoulli equation for the jump updraught gives 

U: = 1-Eb+2AEh. 
Combining (2.14), (2.15), 

(2.15) 

(2.16) 

Using (2.9) and defining a2 = K,+2AE h, the sum of the surface inflow kinetic energy 
and the available potential energy of a particle a t  the upper boundary of the density 
current. On applying the boundary conditions, z, = 0 when z1 = h and zo = 1 when 
z1 = 1,  it follows that 

2, = a ( z l - h )  (2.17) 

and a = l/(l - h ) .  Since < h < $, the value of a satisfies 2 ,< a < 3. The far-field 
streamline displacement, 6(z,) = (xl--xo), is therefore a linear function of the inflow 
height z,, 

6(2,) = h( 1 -2 , ) .  (2.18) 

The streamline displacements within the density current satisfy dz,/dzl = - 1 
and so the inflow and outflow speeds on each streamline must be equal, that is 
Ul(zl) = - U,(zo). Application of the boundary conditions show that the streamline 
displacements are 6(zJ= h -  22,. 
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2.3. Non-constant vorticity i n  the density current 

The far-field solutions for a stagnant current and those for a current having constant 
vorticity have been shown to be significantly different. It is therefore instructive to 
examine the effect of a non-constant vorticity distribution. General far-field vorticity 
distributions would not significantly complicate the mathematics because there is no 
generation of vorticity. However, two particular far-field velocity profiles, u-,(z) in 
the range 0 < z < h serve as useful examples. 

First. the sinusoidal profile, 

u-,(z) = a1 sinyn --- , (1 ;) (2.19) 

1 

where a1 = Fb sin (bn). With this profile, the far-field vorticity is concentrated in the 
middle of the density current. The relationship between h and A, is given by solutions 
of the cubic 

6, A: h 3 - q  At h2 + (6, At -  1)  h++( 1 -al) = 0, 

where 6, = 3( 1 -sin yn/yn)/2 sin ($p) is the ratio of the integrated far-field 
momentum flux in the density current to that for the constant-shear case. For the 
special case of y = 1, either h = 1 or 

(2.20) 

1 

h 2 - h + I  = 0. 
A: 

(2.21) 

Since K ,  cannot be negative and by definition K ,  = 1/ (1  -h)2,  it  follows from (2 .7 )  
that h must lie within the range [$, 13. The positive root of (2.21), 

(2.22) 

is therefore appropriate. Clearly, A, 2 2, with the lower bound representing the 
conservative Benjamin solution. The solution h = 1 is a special case because it 
represents a total blocking of the jump inflow by an overturning circulation which 
extends throughout the full depth of the channel. This solution cannot therefore be 
described as a density current in the conventional sense. 

Second, the profile- 

(2.23) 

concentrates the vorticity near the top and bottom of the density current. The 
functional relationship between h and A, is given by a cubic of the same form as 
(2.20), namely 

6, A: h3-2a2 A: h2 + (6, At - 1)  h ++( 1 -8,) = 0, (2.24) 

where 6, = 1 -4/?/3, /? = 1 +$?-6s/n: is the ratio of the integrated mymenturn flux 
in the density current to that of the constant-shear case, and E = a,/K",, the ratio of 
the amplitudes of the sinusoidal and constant-shear components of the far-field 
velocity profile. Clearly, when s = 0 (2.12), and (2.24) are identical. The maximum 
value of E is 1/n, otherwise outflow would occur for 0 < z < $ and hence violate the 
physical model. 

The far-field velocity profiles in the density current are shown in figure 2. It should 
be noted that, for convenience, the velocity in this figure is normalized by K!, a 
function of h and A,. 

The solutions to (2.20), (2.24) can obviously be expressed in analytic form but since 
these are quite complicated, the depth of the density current as a function of the 
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u-rn(z)/Kk 
FIGURE ;. The far-field velocity profiles in the density current normalized by K,. (a) . . . . . . , 
u-,(z)/KI = 1-(2z/h), which also represents the limit of E = 0 in (c). ( b )  -, u-,(z)/Kf = 
sinya(t-(z/h))/sin&p with y = 1.  (c). ---, u-,(z)/Ki = ( 1  - ( 2 z / h ) ) - ~  sin(2nzlh) with E = 1/n, 
the upper bound for this profile. ( d )  -.-.-, same as ( c )  except that E = E*,  the value that gives 
h = for 0 < A, < 2. In all these profiles the domain of definition is 0 < z < h. 

inverse Froude number for each of the three far-field profiles is shown in figure 3. It 
should be noted that the value of K ,  varies along the curves in this figure, on which 
the limiting values of K', 2 are shown. 

Evidently, the vorticity distribution within the density current significantly 
affects the solution and the physical nature of the phenomenon. It is convenient to 
divide the solutions into three sets, the first two being associated with A, < 2 and the 
last with A, > 2. Note that A, = 2 represents the Benjamin solution. 

The first set is associated with the profile given by (2.23), in which the vorticity is 
concentrated near the upper and lower boundaries of the density current. The far- 
field depth of the density current has the constant-vorticity solution as an upper 
bound for a given value of A,, to which it limits as e + O .  The lower bound is given 
by the solution with E = l /x.  With this type of velocity profile the depth of the 
density current is depressed below the Benjamin value of h = provided that 8 > E*, 

where 

€* = 2 ?t (1 - Jl -$) x 0.15 

is the special case where h = t for all A, in the range [0,2]. 
The second set has the constant-shear solution as a lower bound with the upper 

bound being the full depth of the channel. As y increases towards unity, the flow from 
ahead of the current becomes progressively more blocked and an overturning 
circulation predominates. In the limit, represented by (2.22) with large values of 
A,, the circulation is of the form schematically shown by the left-hand branch of 
figure 4 (a) with a stagnant right-hand branch. This is clearly not a density-current 
type of regime and its physical interpretation is somewhat obscure. It can be 
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0 1 .o 2.0 3.0 4.0 5.0 
Inverse Froude number of density current 

FIGURE 3. The variation of the density-current depth (h) with the inverse Froude number (A,)  
for the far-field velocity profiles shown in figure 2. 

1 I c-* 
I 

/ / / / / / / / / /  
I 

/ / / / / / / / / /  

FIGURE 4. Schema of special cases for the uniform-density model : (a) pure overturning regime ; 
(b )  overturning with a jump with an infinitesimal inflow depth. 
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interpreted, however, as a disturbance moving a t  a (constant)' flow speed within a 
channel and may represent a form of 'slug' flow (Wallis & Dobson 1973). 

The third set associated with velocity profiles given by (2.19) is dominated by a 
similar type of deep circulation, except in the neighbourhood of h b  = 2. The limit as 
A, -+ co also represents the full-depth circulation. 

In view of the physical nature of the solutions, it  is concluded that density currents 
are associated with vorticity distributions which are either zero, constant or have a 
maximum in upper and lower regions, with the stagnant (Benjamin) density current 
being a special case. 

3. Three-fluid models 
The model to be considered here is shown in figure 1 (b) ,  in which the updraught 

inflow bifurcates into the so-called jump and overturning branches. The cases 
considered in the last section are limits for which the inflow into region A is always 
constrained to outflow to the rear. However, in certain meteorological examples of 
density currents and squall lines, a proportion of the relative inflow overturns and 
flows out in the propagation direction of the density current; a bifurcation of 
the stream function therefore exists a t  the interface between regions A and C in 
figure l ( b ) .  This should be contrasted with the pure 'steering level' regime of 
Moncrieff (1978, 1981), in which all the updraught inflow air overturns, which 
represents another limit. 

The three-fluid model consequently involves an interdependence of three 
component branches. Regions A and B are analogous to those considered in the last 
section except that the jump inflow is restricted to 0 < x ,  < h, while the inflow in the 
overturning updraught (region C) occupies the layer h, < zo < +( 1 + h,,). For analytic 
simplicity each branch in the three-fluid model is assumed to have a constant 
vorticity. 

Applying the Bernoulli equation along the upper horizontal boundary and fluid 
interface, an analogous equation to (2.7) can be defined for the overturning 
updraught region, 

where K ,  = hi/(l- h)2, K ,  = p, q 2 / p ,  Ut,  A,2 = d,H'/Ut, fi, = g(p,-p,)/p, and Ul is 
the overturning updraught out'flow speed a t  the upper boundary. Using (2 .4) ,  (2 .7) ,  
(3 .1)  and the hydrostatic pressure equation as x+ & CO, an equation representing the 
conservation of mass, energy and momentum for the three-fluid problem is obtained, 

This equation is symmetric in h and 1-h,,  so i t  is identically satisfied by the 
symmetric solution, h = 1 - h,, for which momentum conservation ceases to be a 
constraint. Using mass conservation to eliminate K ,  and defining 

f ( h )  = ( 3  - 4h) / (  1 - h)2,  

hi[A: + f ( h ) ]  - 2h0(2 + A:) + ( 1  +A: -A: h2) = 0. (3.3) 

It should be noted that (3 .3)  is, in effect, an expression for the conventional density- 
current Froude number (F  = ui/((jb h'):) because 1/F = A, h. Consequently, F is a 
function of the three variables h,, h,  and A,. 

7 FLM IYH 
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There are two upper bounds on the values A, and A, imposed by (2.7), (3 .1) ,  
because K ,  and K ,  cannot be negative, namely 

(3 .4)  

(3 .5)  

The condition for real roots of (3 .3)  is not particularly informative. Since the general 
solutions to (3 .3) ,  ( 3 . 4 ) ,  (3 .5)  are not easy to interpret, i t  is useful to consider 
simplifications. These relate to thc solutions derived in previous sections that are 
limits of the general solutions. 

3.1. Two-fluid limits 
( i )  A, = 1 ,  h, = &, h = 0. In this case the density current is absent so A, is physically 

undefined and can be set to zero. A stagnant overturning updraught exists, 
representing the Benjamin (1968) model except that the flow direction is reversed. If 
h = 0 but a flow exists in the overturning updraught, so that A, and h, are allowed 
tJo vary, then the solution to (3 .3)  is h, = ( 1  +A,2 ) / (3+A: )  and (3 .5)  is satisfied in the 
range 8 < h, < &. The lower limit represents an overturning updraught having a 
maximum depth ( 1  - h  = $), while the upper limit represents a stagnant overturning 
updraught. 

(ii) A, = 2, h, = 1 ,  h = $. This represents a stagnant density current with a full- 
depth jump inflow (h,  = 0) so t,hat A, is physically undefined and can be set to zero. 
If h, remains equal to  unity but h and A; are allowed to vary, then from (3 .3) ,  

A, = [7-] ( 2 - 3 h  / ( l - h )  

and (3 .4)  is satisficd only in the range t < h < $. From the solution in 52.2 the upper- 
bound for A, is 2.  

(iii) A, = 0, h, = 1 ,  h = %. This combination of parameters represents a density 
current having a vanishingly small density difference, an internal circulation of 
maximum intensity and a maximum depth of h = $. 

(iv) A, = 0, h, = $, h = 0. This represents an overturning updraught branch having 
a vanishingly small density difference and a circulation of maximum intensity and 
depth and no density current. This is the inverted counterpart of (ii). 

3.2.  Symmetric solutions 
It is illuminating to consider the simpler symmetric problem in which the overturning 
updraught and the density current have the same depth, so that h, = 1 - h. In this 
case let A, = A, = A* and Fb = F, = F* (say) in which case pa = $(pb+pc) .  The 
inequalities given by (3 .4) ,  ( 3 . 5 )  require that A2, < 1 / ( 2 h )  and hence large values of 
A, (small E;)  are possible only if h is small, that is if both overturning regions are 
shallow. Note that the flow need not be symmetric unless density is uniform. 

In  the symmetric case, the conservation equation (3.2) is satisfied identically and 
the behaviour of the solutions is therefore determined by (2.7),  (3 .1) .  These two 
equations give identical relationships for the kinetic energy per unit volume, p, (1; 
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and p,U; and since Ul = U,, it is sufficient to consider only the case K,  = K ,  = K ,  
(say). It follows that the set of parameters defining the solutions is {K,, A,} with, 

(3.6) 

I n  the symmetric case, the density current and overturning regions can extend 
throughout the full depth of the domain ( h + l ) ,  provided that K+(1-2A2,) or 
alternatively F, + [2/(1- K,)]:. This requires that K ,  < 1 or A, < 1/(2h)z. It follows 
that full-depth symmetric solutions can exist only if hb and A, are both less than 
1/2/2, so that the value of F, (and the conventional Froude number) should be less 
than 2/2. These full-depth three-fluid solutions are counterparts of the full-depth 
two-fluid examples of $2.3.  

If the density difference (pb-pa)  is fixed then A, increases and therefore 
U, decreases. Moreover, for a fixed value of A,, Us decreases as h increases and 
h = 1/(2A:) represents the limiting case of Us = 0, with an analogous results for U,. 

K, = 1 -2A: h. 

3.3. Uniform density 

Another useful special case is when the fluids all have the same density (p) ,  so 
that A,  = A, = 0. In  this case, (3.3) simplifies considerably and has the two roots, 
h, = 1 -h and h, = ( l -h) / (3-4h) ,  which represent the symmetric and asym- 
metric solutions, respectively. For $ < h, < 1,  h, is a rapidly varying function of h, 
while for 0 < h < $, h is a rapidly varying function of h,. The pressure change across 
the system ( A p )  is independent of height. For the symmetric case it is zero a t  all 
levels while for the asymmetric case i t  is given by E, = (1 - h) (1 - 2h) (f- h)-2 and 
K ,  = l-E, = (3-4h)-2.  Moreover, from (2.7), (3.1) Us = -U, and U, = 1 so that 
the remote flow speed is continuous at the two interfaces and in the symmetric 
case Us = U, = -U, = 1. 

As discussed previously, there is an upper limit off  for the density current depth 
and a lower limit of for the overturning updraught. For the upper limit, h = f, 
CJs = -U, = 3,  Ap / ipUi  = -8  and no overturning updraught exists (h, = 1).  For the 
lower limit, h, = g, U, = 1 = -3Ul, Ap/&U; = Q and there is no lower density current 
(h = 0). Symmetric density currents are given by h, = 1 -h, Us = -Ul = 1 and 
A p  = 0. 

The uniform-density model is convenient framework to examine the distinction 
between systems consisting of overturning branches only and those having 
overturning and jump branches. In the former, the orientation of the interface 
between the fluids must be vertical as in figure 4 (a)  and the momentum transport per 
unit mass must be identically zero a t  each level. An example of this model is that for 
R = 0 in Moncrieff (1978) with the downdraught flow reversed. If, on the other hand, 
a jump branch does exist so that the overturning regions do not extend throughout 
the full depth of the domain, then the system will be tilted away from the vertical 
with an associated non-zero momentum transport. 

Consider the horizontal component of the momentum equation, integrated with 
respect to x. It follows that since the cross-system pressure difference is constant a t  
each level and w = 0 at the lower boundary, 

(3.7) 

where (uw), denotes the local value of uw at height z and E ,  = 0 only for the 
symmetric solution. Since u-,(z) and um(z) are known from the far-field solutions, it 

7-2 
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FIGURE 5. The vertical profile of the momentum transport for the constant-density case for 
selected values of the density-current depth (h) or the jump inflow depth ( h J .  

follows that the vertical profile of the momentum transport can be calculated and 
depends on the value of ha (or h)  as shown in figure 5 .  The profile is symmetric for 
h = $, while for < h < $ and 0 < h < a, the maximum is displaced above and below 
z = t respectively. 

In  the asymmetric case it should be noted that since solutions exist only in 
the range 0 < h < $ (corresponding to < ha < 1) this solution is characterized by the 
presence of both jump and overturning regions. However, in the symmetric case the 
solution with ha = 0 is evidently possible, so that the density current and overturning 
updraught can extend throughout the entire depth of the domain and a jump branch 
is absent. This solution should limit to the form shown in figure 4(a). The limit of 
ha = 1 represents the horizontal undisturbed flow with u = 1 asymptotically. If 
ha = ea (a small number) then the form of the solution is as in figure 4(b). In the sym- 
metric case as ha increases from zero, the orientation of the system will change from 
being vertical to progressively more horizontal as ha + I .  A rigorous examination 
of the internal structure and orientation of the system, however, requires the solution 
of the appropriate internal boundary problem. This generality is, however, beyond 
the scope of this paper. 

Following from the definition of E,  and considering the asymmetric solution, when 
the density current depth (h) exceeds half the total depth, there is a net pressure drop 
across the system and the density current is maintained by a faster inflow speed 
(Us) ;  the maximum pressure drop exists for h = $. On the oher hand, when h is less 
than half the total depth there is a pressure rise and a corresponding decrease in 
Us and the maximum pressure rise coincides with h = 0. It follows that a shallow 
density current is associated with high pressure to the rear and a weak inflow, 
whereas a deep density current coincides with a rearward lowering of the pressure. 

3.4. General solutions 
The general problem in which A, and A, are unequal is represented by both roots of 
(3.3) together with the inequalities (3.4), (3.5). Values of A,, A, and h are specified and 
the corresponding roots for ha calculated. The complicated nature of these solutions 
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B, B* 

A, 
FIGURE 6. Schema of the significant types of flow organization. A description can be found in 

the text. 

is difficult to describe concisely, so a convenient (but probably not unique) 
classification is used. Consider the three main classes of behaviour schematically 
shown in figure 6. The two-fluid type B has either a density current or an overturning 
region and contains the Benjamin solution as a special case. It is appropriate to  
subclassify B into B, and B,. Type B, has a density current with a jump updraught 
extending throughout the full depth of the domain and coincides with the solution 
shown in $3.1. Type B, has no density current but contains jump and overturning 
updraughts and includes the case in $3.1. Class S represents the symmetric solutions 
of $3.2 with h, = 1 - h. The symmetric type can only extend over the full depth of 
the domain if A, 6 4 2 ,  as established above in $3.2. Class A represents the 
asymmetric solutions, and it is useful to consider four different types A,, A,, A, and 
A,. A, has a deep density current and a shallow overturning updraught, which 
degenerates into the B, type; A, has the converse structure with a shallow density 
current and a deep overturning updraught, and degenerates into the B, type; A, has 
deep density and overturning regions (this is predominantly an ‘overturning ’ 
regime) ; A, is distinguished by having relative shallow density current and 
overturning regions. Both A, and A, are variants of the symmetric S type but they 
extend over a much wider range of parameter space. 

Sets of solutions to (3.3), subjected to the necessary constraints (3.4), (3.5) are 
shown in figure 7 as contours of h, with h and A, on the abscissa and ordinate 
respectively and A, a specified parameter. When distinct roots of the quadratic exist 
these are plotted separately and entitled ‘root 1 ’  and ‘root 2’  on the appropriate 
diagrams. Evidently, there are significant differences between small and large values 



i 
A,

 =
 0

 
R

oo
t 

1 

i 
0.8

 

A,
 =

 1
 

R
oo

t 
1 

R
oo

t 
1 

3 5
 

E 
.- g 

0.
8 

B x
 

u
 

."
 $ 
0.
6 

V
 

'r
 

'r
 

g 
0.

2 
g 3 

0.
2 

0
 

i::
:::

:::
:::

:::
::. 

A
 
.....
.....
.....
.....
... 

0 
0 

1.
0 

2.
0 

3.
0 

4.
0 

5.
0 

In
ve

rs
e 

F
ro

ud
e 

nu
m

be
r 

of
 d

en
si

ty
 c

ur
re

nt
 

1.
0 

2.
0 

3.
0 

4.
0 

5.
0 

0 
1.

0 
2.

0 
3.
0 

4.
0 

5.
0 

In
ve

rs
e 

F
ro

ud
e 

nu
m

be
r 

of
 d

en
si

ty
 c

ur
re

nt
 

In
ve

rs
e 

F
ro

ud
e 

nu
m

be
r 

of
 d

en
si

ty
 c

ur
re

nt
 

1.
0 

I
I

I
I

,
,

I
I

.
,

,
,

,
,

,
,

,
,

,
,

,
,

,
.

 
1 .
O 

0.
8 
i 

A,
 =

 1
 

R
oo

t 
2 

u
 2 

0.
8 

8 x
 

u
 .- $ 
0.
6 

2
 

.$
$
 0

.4
 

8
 
3
 

0
 

a
 

'r
 

0.
2 

0.
6 

0.
4 

1 
I 

, 
, 

, 
B

*
, 

0 
1.

0 
2.

0 
3.

0 
4.

0 
5.

0 
In

ve
rs

e 
F

ro
ud

e 
nu

m
be

r 
of

 d
en

si
ty

 c
ur

re
nt

 
0 

1.
0 

2.
0 

3.
0 

4.
0 

5.
0 

In
ve

rs
e 

F
ro

ud
e 

nu
m

be
r 

of
 d

en
si

ty
 c

ur
re

nt
 

0 
1.

0 
2.

0 
3.

0 
4.

0 
5.

0 
In

ve
rs

e 
F

ro
ud

e 
nu

m
be

r 
of

 d
en

si
ty

 c
ur

re
nt

 

192 M .  W .  Moncrieff and D .  W .  K .  So 



Outflow height of density current 
- R z z z 0 

€61 

Outflow height of density current 

- 0 R 0 

Conservative bounded density currents 193 

F
IG

U
R

E
 

7.
 S

et
s 

of
 s

ol
ut

io
ns

 t
o

 (
3

.3
),

 (3
.4

),
 (3

.5
) r

ep
re

se
nt

ed
 a

s 
co

nt
ou

rs
 o

f 
h,

 w
it

h 
A,

 s
pe

ci
fi

ed
 a

nd
 h

 a
nd

 A
b 

as
 v

ar
ia

bl
es

 
(a

) A
, 

=
 0

; (
b

) A
, =

 0
.5

; (
c)

 A
, =

 1
.0

; (
d

) A
, 
=

 4
2

 an
d 

(e
) A

, 
=

 3
.0

. I
f t

w
o 

re
al

 r
oo

ts
 e

xi
st

 t
he

se
 a

re
 re

fe
rr

ed
 t

o
 a

s 
ro

ot
s 

1 
an

d 
2.

 
O

nl
y 

on
e 

ro
ot

 e
xi

st
s 

in
 c

as
es

 (
d

) a
nd

 (
e)

. T
he

 i
so

li
ne

 i
nt

er
va

l 
is

 0
.0

2.
 



194 M .  W .  Moncrieff and D.  W .  K .  So 

of A, and it  is convenient to compare the regimes as A, increases from zero towards 
its maximum value (approximately 4) in which case the solution is given by (3.13) 
and plotted on figure 3 (e = 0). The general behaviour of the solutions will be 
discussed by referring to the above classification. 

(i) A, = 0, figure 7 (a) .  This identifies a special case in which there is a continuous 
variation of h, within the permitted parameter range. The uniform-density models of 
$3.3 are defined if A, is also zero. The symmetric solutions occupy the range [0 ,3  of 
root 1 and [i, I] of root 2 on the ordinate while the asymmetric solutions occupy the 
range [&g] of root 1 and [O,+] of root 2, consistent with the remarks in s3.2. 
Considering non-zero values of A,, the upper part of the root 1 domain represents the 
B, type, which limits to the solution with e = 0 shown in figure 3 for large values of 
A,. The lower portion of the diagram for root 1 defines the A, type of structure of 
shallow density current and overturning updraught branches with a continuous 
transition to the A,, I3, and S types. For root 2, the lower part of the diagram 
represents the B, type. There is a continuous transition to the A,, A, and S types for 
both roots. For values of A, greater than about 2, the root 1 and root 2 solutions 
asymptote to the undisturbed flow (represented by the abscissa) and the B, type 
(associated with a minimum value of h, = g), respectively. 

(ii) A, = 0.5, figure 7 ( 6 ) .  The above behaviour is maintained for values of A, 
smaller than l /d2 ,  with symmetric solutions being possible only if A, = A,. There is, 
however, an important distinction between zero and non-zero values of A, because in 
the latter, gaps appear in the solution spectrum. This first becomes evident in the 
neighbourhood of the point (A, = 0, h = i). 

(iii) A, = 1.0, figure 7 ( c ) .  An intermediate type of behaviour is illustrated by this 
case, because for values of A, smaller than 1 there is a marked gap in the solution 
spectrum. First considering root 1, the upper bound for h is again given by the B, 
solution, the typical behaviour of all values of A,, while the lower part of this diagram 
represents an A, structure. There is a discontinuous transition to a basically A, type 
behaviour as the density-current depth increases from zero to its maximum value. 
For A, = 1 there is a continuous transition from A, to B, passing through A, type 
behaviour. Second, the values of h, = for root 2 on the A,-axis show that this is the 
limit to the B, solution. 

(iv) A, = d2, figure 7 ( d ) .  The discontinuous behaviour of the solutions for 
intermediate values is well illustrated by this case. Only one root exists, defining 
either the A,, A, or B, types. 

(v) A, = 3, figure 7 ( e ) .  Larger values of A, represent extreme cases of the A, or the 
B, types. It should be noted that the B, type is the limit as A, increases to  its 
maximum value ( z 4), and this coincides with the solution e = 0 on figure 3. No 
overturning updraught exists for values of A, in excess of this value, and therefore 
only two-fluid flow is possible. 

The gaps in the spectrum can be explained as follows: (3.5) shows that large A, 
implies a shallow overturning updraught, while the same result follows from (3.4) for 
the density current when A, is large. However, since Lo < 1, A, cannot exceed a 
critical maximum value. Moreover (3.4), can be written as a cubic relationship in h, 
namely h( 1 - h ) ,  < h,/2 A!. The cubic h( 1 - h) ,  = 0 attains a maximum of & at h = 
and a minimum at  h = 1. If A! < y h  then (3.4) is satisfied in the range 0 < h < 1 but 
if A$ > y ;  then (3.4) can be satisfied only within discrete intervals in the 
neighbourhood of h = 0 and h = 1.  This accounts for the gap between the two ranges 
of solution and this arises if A$ > $ > $h,. Consequently, shallow overturning 
updraughts and density currents are associated with ‘large’ values of and Ac. 
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4. Discussion 
The theoretical analysis refers to fluids in which the density differences between 

the fluids are not necessarily small (non-Boussinesq). This allows the models to be 
applied to a wide range of multifluid phenomena, including those associated with 
the channel flow of liquids. Boussinesq theory is a special case and is obtained in the 
usual way by ignoring the effect of density in the inertial terms but retaining it in the 
buoyancy terms. Consequently, in the appropriate equations, & / p a  and p,/pa are set 
to unity, which modifies only the K parameters. The Boussinesq limit is appropriate 
for density currents and other related phenomena in the atmosphere. 

The presence of vortex sheets is a characteristic of the analytic models, and a 
satisfactory understanding requires the solution of a free-boundary problem for the 
internal flow, for instance, analogous to that of Moncrieff (1978) for the problems of 
convection in a stratified shear flow. Moreover, the development of discontinuities 
from an initial state is important and this aspect should be examined to establish if 
the steady-state solutions can represent time-asymptotic solutions of the appropriate 
nonlinear equations. The stability of the vortex sheets is related to the presence of 
vortices behind the head region and to non-conservation of energy, Such aspects were 
treated by Benjamin (1968) but although the presence of vorticity in the density 
current complicates the problem, it is likely that the same general physics applies. 

There are physical similarities between the two-fluid solutions of in $2 and those 
considered by Britter & Simpson (1978) in which fluid was injected with a constant 
volume flux (Q) into the density current. The form of the flow in the density current 
in Britter & Simpson (1978) is empirical because the return flow includes mixing with 
the overlying fluid, and inflow has zero vorticity while the outflow vorticity is non- 
zero. In the sense that mixing is included in the Britter & Simpson (1978) model and 
only the mass and momentum equations are solved simultaneously, the approach is 
essentially non-conservative. 

Non-conservative systems can be represented by an approach similar to that in 
previous sections. For example, in the constant-vorticity model, if the momentum 
constraint represented by (2.5) and mass continuity are combined but the energy 
constraint ignored, then (2.12) is replaced by 

A: h3+ (gKb-2A;) h2+ 1) h+'(, = 0. 14.1) 

Solutions can be found by specifying K, ,  the counterpart of $he non-dimensional 
volume flux (4)  in Britter & Simpson (1978). However, owing to the presence of 
vorticity within the density current, the solutions will differ from those of Britter & 
Simpson. An ad hoc comparison can nevertheless be made by using the conservative 
solutions for a specific value of q. Following Britter & Simpson, Q = Qdb/Ui,  and if Q 
is interpreted as the average density-current inflow volume flux then Q = $Us h, 
and 

Using (2.7) and mass continuity i t  follows that q can be expressed as a function of h 
only, 

(4 .3)  
[3(2h- l)]; (2 - 3h) 

4( 1 - h)3 q(h) = 

Clearly, q is zero if h = 4 (Us is then zero) or if h = %, (pa = p b ) .  The maximum value 
of q is approximately 0.31, corresponding to h = 0.52. 

The two-fluid theory shows that, in contrast to the Benjamin solution, the depth 
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of the density current in a conservative flow is not uniquely determined but depends 
on the value of K, .  In  order to close the system it is necessary to make an additional 
assumption (or formulate an additional constraint) to specify the value of K,. One 
of the major conclusions of the extended two-fluid theory is, however, that a wide 
range of far-field conservative solutions can exist. Holyer & Huppert (1980), in 
considering energy-conserving flows in the presence of a boundary current, also 
found non-unique behaviour. The uniqueness criterion used in Holyer & Huppert, in 
a somewhat different physical problem, was that the volume inflow ( UoH') should be 
a maximum because otherwise, it was argued, non-conservative solutions would 
exist. In  the problem considered here H is fixed, so the Holyer & Huppert condition 
is equivalent to  maximising UA. Since the density-current propagation speed 
increases with its depth, this suggests that the solution with h equal to the maximum 
value of ?j should be chosen. The same conclusion can be deduced for Boussinesq fluids 
from a different physical argument. Suppose that the value of K ,  is chosen to satisfy 
continuity of velocity a t  x = h so that Helmholtz instability, a subsequent breakdown 
of the density current interface and a transition to turbulence may not be present. 
Therefore, Us = -U, and, since mass continuity gives K i  = 1/(1 -h) ,  it follows on 
using (2.10) that the unique solution is h = t. 

It should be noted that in the three-fluid theory, the overturning updraught region 
is not a density current because horizontal divergence exists in the neighbourhood of 
the upper stagnation point instead of the convergence that is typical of a density 
current. The structure of the upper-level flow therefore resembles a wall jet. 
Significantly, a range of conservative solutions exists in the three-fluid theory but the 
physical reality of these is considerably more complicated than the two-fluid 
examples. The distinguishing physical feature of the three-fluid solutions is that 
either a stagnant region or a circulation exists a t  upper levels depending on whether 
K ,  is zero or non-zero, respectively. It would be interesting to seek such behaviour 
in appropriate laboratory experiments, although the technical difficulties in 
implementing such a study would probably be formidable. For this reason and since 
the atmospheric applications of density-current theory are of primary interest, i t  is 
considered that an evaluation of high-quality field-experiment data or numerical 
simulations are more promising courses to follow, for instance a rationalization of the 
structure of squall lines and narrow cold-frontal rainbands by Moncrieff (1988). 

In conclusion, a number of additional dynamical effects have been exposed by the 
inclusion of vorticity within the density current. The physical reality of these steady, 
conservative solutions is a t  present under examination and the approach is being 
extended to include vorticity sources and stratification. 
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